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High Performance Concentrators and 
Superconcentrators Using Multiplexing Schemes 
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Abstract- Concentrators are used to interface and combine 
together low speed communication channels onto higher speed 
transmission links to alleviate transmission costs. They are also 
used to construct more powerful switching fabrics such as permu- 
tation and broadcast networks. Using an adaptive binary sorting 
network model, this paper constructs new concentrators and 
superconcentrators. Unlike the previously reported concentrators 
and superconcentrators, these new constructions are fast, and 
can easily be implemented using simple switching devices. More 
specifically, for n inputs, they can be constructed with O(n lg lg n )  
constant fanin bit-level multiplexers and demultiplexers, and can 
be routed in O(lg2 n )  bit-level time. 

I. INTRODUCTION 
N communication networks, signals are transmitted over I long-haul channels such as coaxial cables, optical trunks, or 

remote microwave carriers when the distance between callers 
and receivers exceed a few tens of miles. To reduce channel 
costs, and achieve higher efficiency and utilization, while 
containing congestion, the callers within each local area are 
often allocated a set of channels, each of which can be used 
by any of the callers to reach any of the receivers outside 
that area. As the number of callers within a given area is, in 
general, much larger than the number of allocated channels, 
one must use a switching network to multiplex the callers 
into the channels. Such a switching network is often called a 
concentrator [21], [25]. 

Formally, an (n,m)-concentrator, where m 5 n, is a 
switching network with n inputs (for callers), and m outputs 
(for channels) that can connect any IC of its inputs to some fixed 
IC of its outputs, but without the ability to distinguish between 
those outputs. In addition to being used for multiplexing 
callers into channels, concentrator switches also play a central 
role in the constructions of efficient superconcentrators [8], 
permutation and broadcast networks [20], [27], [181, [131. 

As with other switching networks, three parameters under- 
pin the performance of a concentrator: its cost, depth, and 
concentration time. In this paper, the cost of a concentrator 
is the number of constant fanin, bit-level switches it contains, 
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its depth is the maximum number of such switches on a path 
from an input to an output, and its concentration time is the 
time it takes to realize any concentration assignment. The unit 
of time is a delay through a constant fanin, bit-level switch 
or logic gate. 

Concentrators have been studied under two different models 
in the literature. In the first model, a concentrator is viewed as a 
graph with two distinguished sets of vertices, called inputs and 
outputs [4]. A concentration pattem is a set of vertex-disjoint 
paths between the inputs and outputs through the graph. The 
cost in this model is defined as the number of edges in the 
concentrator graph, and the depth is defined as the maximum 
number of edges on a path from an input to an output. 

In a seminal work, Pinsker showed by a combinatorial 
argument that there exist concentrators with linear cost and 
logarithmic depth [22]. Later Margulis [17] gave a concentra- 
tor which, he showed, had linear cost, but could not determine 
the exact constant factor in the cost expression. Based on 
Margulis’ construction, Gabber and Galil [6] gave an explicit 
concentrator construction with linear cost and logarithmic 
depth. Since this construction was revealed, several other 
explicit constructions with smaller constants have also been 
obtained [24], [l], [14]. 

Despite their linear cost, and logarithmic depth, it is dif- 
ficult to route these concentrators as they are all based on a 
certain kind of bipartite graph, called an expander [22], [21. 
Realizing concentration assignments on these concentrators 
requires finding matchings on expanders. Unfortunately, the 
best matching algorithm for bipartite graphs requires O(n2.5) 
serial time [7], [9], [5], and even though there exist parallel 
matching algorithms that run in polylogarithmic orders of 
time, these algorithms require parallel computers with complex 
interconnection topologies [ 161, [ 191, 151, [261. 

Recently, another concentrator model was introduced in [ 121 
to incorporate the routing problem into the construction of 
a concentrator. In this model, the concentration problem is 
broken into two subproblems, namely ranking and routing. It 
was shown in [12] that the ranking problem can be solved by 
using an O(n  lg n) bit-level cost prefix circuit with O(lg2 n) 
bit-level depth. It was also shown there that the routing 
problem can be solved by using an O(n  lg2 n)  bit-level cost 
cube network with O(lg n)  bit-level depth. More recently, this 
construction was modified in [lo] to reduce the total bit-level 
cost to O(n1gn) and the bit-level depth to O(lgnlg1gn). 

While these concentrators provide low cost, small depth 
and short routing time, their implementations require different 
types of components such as arithmetic circuits and switching 
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Fig. 1. An 8-input Batcher’s odd-even merge concentrator. 
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devices. In this paper, we introduce a concentrator construction 
that can be implemented by using only multiplexer circuits. 
The main concept behind our concentrator is the notion of 
adaptive binary sorting [28] which combines the ranking and 
routing steps into a single step. This concentrator has O(n lg n)  
bit-level cost, O(lg2 n)  bit-level depth and routing time, and 
with pipelining, its cost can be reduced to O(n lg lg n)  without 
increasing its depth and routing time. These cost, depth and 
routing time complexities are competitive with the complexi- 
ties of the concentrators mentioned above. 

The rest of this paper is organized as follows. Section 
I1 presents the multiplexer-based concentrator. Section I11 
describes how time-multiplexing and pipelining can be used to 
reduce the cost of this concentrator without increasing its depth 
and routing time. Section IV shows how this concentrator can 
be used to obtain a superconcentrator with the same cost, 
depth and routing time complexities. The paper is concluded 
in Section V. 

Input pattem 

Xql mdXq3 
al l  
O’s,Xq~ * Xq4is 
bi-sorted 
Xql is all O’s, 
Xq4 is all 1’s and 
Xqz * Xq3 is 
bi-sorted 
Xql *Xq4 is 
bi-sorted, Xq2 is 
all l’s, and Xq3 is 
all 0 ’ s  
X,1 *Xq3 is 
bi-sorted, Xq2 and 
xq4 are all 1’s 
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Fig. 2. A 16-input concentrator. 

TABLE I 
BEHAVIOR OF MU-MERGER 

11. BINARY SORTERS AS CONCENTRATORS 
Both concentrators to be described are based on adaptive 

binary sorting.’ Suppose that all those inputs of a concentrator 
that need to be concentrated are assigned a 0 bit, and the 
remaining inputs are assigned a 1 bit. If the inputs are 
sorted in ascending order with their assigned bits used as 
the keys for soaing, then all those inputs that are assigned 
0 bits (or 1 bits) can be mapped together into a set of 
consecutive locations which then amounts to a concentration 
of the inputs. We carry out this sorting on a network of 
multiplexers. Unlike conventional sorting networks that are 
constructed out of compare/exchange elements only [ 111, [3], 
our binary sorters are adaptive in that we probe various points 
in a sorter to determine the paths of inputs. For comparison, an 
8-input Batcher’s odd-even merge sorting network is depicted 
in Fig. 1, where the shaded boxes represent two-input com- 
parelexchange elements. This network is nonadaptive in that 
it can be constructed with such elements only. For n inputs its 
cost is O(n lg2 n) and its depth is O(lg2 n). 

Our adaptive binary sorter is based on the following obser- 
vation. 

Definition 1: A binary sequence is called bi-sorted if each 
of its two halves is sorted. 

Theorem 1 [28]: If a bi-sorted binary sequence is cut into 
four equal-size subsequences, then at least two of the subse- 

‘For ease of discussion, but with no loss of generality, all networks 
described in this paper are assumed to have a power of two inputs. 

quences contain only 0’s or only 1’s and the other two, when 
concatenated form a bi-sorted sequence. 

Proof: Let X ,  denote a bi-sorted binary sequence of size 
n. Let X q l ,  Xq2, X,3 and X,, denote the four quarters of X ,  
from top to bottom, respectively, and X U  and X L  denote its 
upper and lower halves (refer to Fig. 2). If there are more 
0’s than 1’s in X u ,  then Xql must contain all 0’s and Xq2 
must be a sorted sequence of size n/4. On the other hand, if 
there are either an equal or more number of 1’s than 0’s in 
X U ,  then Xq2 must contain all l’s, and X,,  must be a sorted 
sequence of size n/4. Similar statements hold for Xq3 and 
Xq4. Therefore, at least two of X q l ,  Xp2, X,3 and X,, must 
be all 0’s or all 1’s and the other two must form a bi-sorted 
sequence when concatenated. I I 

Thus, if a binary sequence of n inputs is bi-sorted using 
two n/Z-input sorters then the proof of the theorem suggests 
how to identify the two quarters of the bi-sorted sequence that 
form a bi-sorted sequence of size n/2 when concatenated, as 
well as its all zero or all one quarters. The network in Fig. 2 is 
constructed based on this fact, where the network enclosed by 
the rectangle in dash lines, and called a Mu-Merger, merges 
the bi-sorted sequence at the outputs of the two sorters into 
a sorted sequence. 

Table I lists the possible patterns of bi-sorted sequences 
and shows how the Mux-Merger selects the quarter-size sub- 
sequences for each pattern.* The entries in the table denote 

2The symbol * used in the table denotes a concatenation operator. 
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1Cinput Muxmupr 

Fig. 3. An example showing the operations of a 16-input Mux-Merger. 

various points in the network as marked in Fig. 2. As sug- 
gested by the proof of Theorem 1, the middle two bits of 
the two sorted halves of outputs can be one of four binary 
patterns, 00,01,10,11. For each of these, the patterns of X,l, 
Xq2, X,, and X,4 are uniquely determined, and the selections 
of the four quarters can be made accordingly as shown in the 
table. The n-input, four-way IN-MUX and OUT-MUX circuits 
shown in the figure for n = 16 map their four quarters of 
inputs to their four quarters of outputs without altering their 
relative ordering according to the binary code they receive at 
their select inputs as shown in the table. All these maps can be 
realized by connecting each input in both IN-MUX and OUT- 
MUX circuits to four outputs, one in each group of outputs. 
Thus, an n-input four-way IN-MUX or OUT-MUX circuit can 
be implemented by using n 4 x 1 multiplexers. 

Since the concatenated two quarters form a bi-sorted se- 
quence by Theorem 1, the same Mux-Merge process can 
be applied recursively. As an example, Fig. 3 shows the 
operations of a 16-input Mux-Merger, for a 16-element bi- 
sorted binary sequence, 00111111/00000111. Since the two 
middle elements are 1 and 0, by Table I, IN-MUX circuit 
moves X,, to Yq3, X,, to Yq2, Xq3 to Yql, and Xq4 to 
Yq4. The resulting 8-element bi-sorted sequence Ypl * Yp4, 
i.e., 00110111, then becomes the input for the next level of 
Mux-Merger. The process is repeated through the next level of 
Mux-Merger, and finally, the multiplexer, OUT-MUX reorders 
the four sorted quarters to form a sorted output. 

The entire binary sorting network can be constructed using 
IN-MUX and OUT-MUX circuits if the half-size sorters in 
Fig. 2 are recursively replaced by the same sorter construction. 
An example is depicted in Fig. 4 for n = 16. 

The cost and depth complexities of this binary sorting 
network for n inputs can be recursively expressed as 

where C(n)  and D(n)  denote the cost and depth of the entire 
network respectively, and C,(n) and D,(n) denote the cost 
and depth of the Mux-Merger. C, (n) and D, (n) can also be 
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Fig. 4. A 16-input concentrator constructed with Mux-Mergers. 

expressed recursively as 

Cm(n) = cm(n/2)  + c I N - M U X ( n )  + C O U T - M U X ( n )  

(3) 

(4) 

where C I N - M U X ( ~ )  and C O U T - - M U X ( ~ )  denote the costs 
of IN-MUX and OUT-MUX circuits, and D r ~ - ~ u x ( n )  and 
D ~ u T - M u x ( ~ )  denote their depths. It is easy to see that 
IN-MUX and OUT-MUX circuits can be constructed with 
O(n)  constant fanin, bit-level logic gates, and in O( 1) bit-level 
depth. Substituting these in the above equations and solving 
the recurrences with C,(2) = 0(1) and D,(2) = 0(1), gives 
Cm(n) = O(n) and D,(n) = O(1gn). These, combined with 
(1) and (2), yield C(n)  = O(n1gn) and D ( n )  = O(lg2n). 
It should be obvious that the routing time complexity of this 
binary sorting network is the same as its depth complexity. 
Thus, these results establish an n-input concentrator with 
O(n lg n)  cost, O(lg2 n)  depth, and O(lg2 n) concentration 
time, all in bit-level. We note that the constants in these 
complexity expressions are small and are bounded from above 
by the number of gates that are needed to implement a 
4 x 1 multiplexer in terms of elementary logic gates. A naive 
implementation would use at most four three-input AND gates 
and one four-input OR gate, and would have a depth of 2. 
These numbers are comparable to the number of gates that 
would be needed to implement a two-input compare/exchange 
element which is used in the construction of Batcher’s odd- 
even merge sorters. 

Dm(n) = Dm(n/2)  + D I N - M U X ( 7 1 )  + D o U T - M U X ( n )  

III. TIME-MULTIPLEXED CONCENTRATION 

The cost of the concentrator described in the previous 
section can be reduced to O(n1glgn) without increasing its 
depth or routing time. For this, the network shown in Fig. 5 
can be used. In this network, we use a multiplexing scheme 
proposed in [15]. The idea is to multiplex the binary inputs 
through a binary sorting network with a smaller number of 
inputs. The input sequence is first arbitrarily divided into IC 
groups of n / k  elements, where 2 5 IC 5 n and k divides 
n. Each group of inputs is run through an (n,n/k)-MUX 
circuit3 sequentially, and sorted by an n/k-input binary sorter. 

3An (n, n/k)-MUX circuit is just a collection of n/k k x 1 multiplexers. 
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C r m y  )rleruiina Network Substituting these into (5) and (6) we find 

I I 

Fig. 5. A 16-input concentrator using a multiplexing scheme, where k = 4. 

The sorted n/k-element sequences are then moved through 
an ( n / k ,  n)-DEMUX circuit4 to the inputs of a k-way merger, 
where the first n / k  inputs of the k-way merger are occupied by 
the first sorted n/k-element sequence, the second n / k  inputs 
are occupied by the second sorted n/k-element sequence, and 
so on. 

The Ic-way merger is implemented in terms of Mux-Mergers 
by using an iterative construction. The fitst stage of the 
merger uses k/2 2nlk-input Mux-Mergers to merge pairs 
of n/k-element sorted sequences, the second stage uses k/4 
4nlk-input Mux-Mergers to merge pairs of 2n/k-element 
sorted sequences, and in general, the ith stage uses k/2i 
2in/k-input Mux-Mergers to merge pairs of 2i-1n/k-element 
sorted sequences, 1 5 i 5 lgk. For the network given in 
Fig. 5,  n = 16, and k = 4. 

Let C(n, k )  and D(n,  k )  denote the cost and depth of this 
network, respectively. It follows from the preceding discussion 
that 

c ( n ,  k )  = Cd(n, n / k )  + cs(n/k) + c w ( n ,  k )  
D ( n , k )  = D d ( n , n / k )  + D s ( n / k )  + Dw(n, k ) ,  

( 5 )  
(6) 

where Cd(n,n/k) and Dd(n,n /k )  denote the cost and 
depth of the (n,n/k)-MUX and (n/k,n)-DEMUX circuits 
combined together, Cs(n/k)  and D,(n/k) denote the cost 
and depth of the n/k-input binary sorter, and Cw(n,k) and 
Dw(n,Ic) denote the cost and depth of the Ic-way merger. 
The (n,n/k)-MUX (DEMUX) circuit can be implemented 
by using O(n/k )  O(1gk)-level binary trees whose nodes are 
2 x 1 multiplexers (1 x 2 demultiplexers) [lo], [15]. The bit- 
level cost and depth of these implementations can be shown 
to be O(n)  and O(lgk), respectively. If we use the binary 
sorting network construction of the preceding section then the 
cost and depth of the n/k-input sorter are O ( ( n / k )  lg(n/k)) 
and O(lg2(n/k)), respectively. As for the k-way merger, 
summing up the costs and depths of the Mux-Mergers in its 
construction, 

(9) 

and noting that these expressions are minimized when k = 
0 (lg n)  , we obtain 

C(n, lgn)  = O(nlg1gn) (11) 
D(n, lgn)  = O(lg2n). (12) 

We note that the inputs to be sorted in this binary sorter 
construction are multiplexed, and hence the depth of the 
network does not give the time it takes to complete the sorting. 
But given that the depths of all the components in this network 
are known, its sorting time, T(n ,k ) ,  can be determined by 
noting that the k groups of n / k  bits must be multiplexed 
through the n/k-input sorter. Thus, 

T(n, k )  = k(Dd(n, n / k )  + Ds(n/k)) + Dw(n, k )  (13) 
= O(k1gk) + O(klg2 i )  + O(lgn1gk) (14) 

and letting k = lgn  gives 

qn, ign) = 0(ig3 (15) 

The sorting time can be reduced to O(lg2 n)  by noting that 
the k groups of n / k  inputs can be pipelined through the n / k -  
input binary sorting network. The sorting time with pipelining, 
Tpip(n, k ) ,  is given by 

Tpip(n,k) = 0(lg2 ;) + O ( k )  + O(1gk) + O(lgn1gk) 

(16) 

where the 0(lg2(n/k)) and O(1gk) terms account for the 
time for the first group of n / k  elements to exit the pipeline, 
and the O ( k )  term accounts for the time that the remaining 
k - 1 groups of n / k  elements need to get through the pipeline. 
The O(lg n lg k )  term is the merging time which takes place 
after the pipelining is completed. Letting k = lgn  gives 
Tpip(n, lgn)  = O(lg2 n) as desired. 

IV. SUPERCONCENTRATORS 
An (n ,  m)-superconcentrator is a switching network with n 

inputs and m outputs that can connect any k of its n inputs, 
where k 5 min{n, m} , to any k of its m outputs, but without 
the ability to distinguish between those outputs. The main 
distinction between a concentrator and superconcentrator is 
that, in the latter, the inputs can be mapped to any set of 
outputs on a one-to-one basis. In contrast, the inputs in a 
concentrator can be mapped to some fixed but not any set 
of outputs. Superconcentrators can thus be used to circumvent 

l gk  k 2in faults in the output terminals, and thus form a viable alternative 
Cw(n,k) = E O ( - - )  2% k = O(n1gk) (7) to concentrators. 

i=l A superconcentrator can be constructed by cascading two 
l g k  2in concentrators back-to-back [8]. More precisely, an (n, m)- 

D w ( n j  k ,  = '('g -) k = '('g 'g ') (8) superconcentrator can be constructed by cascading an (n, k ) -  
concentrator with an (m, k)-concentrator as shown in Fig. 6. It 
must be noted that the concentrators in this construction must 

i=l 

4An ( n / k ,  12)-DEMUX circuit is a collection of n / k  1 x k demultiplexers. 
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Fig. 6. A superconcentrator using binary sorters. 

TABLE I1 
COMPLEXITIES OF VARIOUS CONCENTRATOR DESIGNS IN BIT LEVEL 

Construction cost Depth Concentration 
Time 

Odd-even Merge O(nlg2 n) O(1g2 n) O(lg2 n)  
Concentrator [3] 

Concentrator [ 121 
Reduced 
Ranking 
Concentrator[ 101 
Mux-Merger Concentrator O(n 1g n)  o(lg2 n )  o(lg2 .) 
MultiplexedPipelined O(n 1g 1g n)  O(lg2 .) O(lg2 .) 
Mux-Merger Concentrator 

Ranking O(nlg2 n)  O(lg2 n) O(lg2 n )  

O(n lg n )  O(1g n lg lg n )  O(lg n 1g lg n )  

be capable of concentrating their inputs to a common set of 
outputs. The binary sorters described in the previous sections 
obviously meet this criterion. The only alteration that is needed 
before they can be used in this superconcentrator construction 
is to remove all but their first k outputs. With this alteration the 
routing on the superconcentrator proceeds in two directions. 
The inputs to be concentrated are sorted to the outputs of the 
left binary sorter, and the outputs onto which the inputs are to 
be concentrated are sorted by the right binary sorter to meet 
the concentrated inputs at the outputs of the left binary sorter. 

It is easy to see that the cost, depth and routing complexities 
of this superconcentrator are of the same order as the cost, 
depth and routing time complexities of the binary sorters used 
in its construction. 

V. CONCLUDING REMARKS 

This paper explored adaptive binary sorting and multiplex- 
ing schemes to construct fast and low cost concentrators and 
superconcentrators. The complexities of the two concentrators 
described in the paper are listed in Table I1 along with those 
given in [3], [12], [lo]. As can be seen in the table, the 
cost of the Mux-Merger concentrator is smaller than that 
of the odd-even merge concentrator, and matches the cost 
of the concentrator given in [lo]. The cost of the time- 
multiplexed Mux-Merger concentrator is smaller than all three 
concentrators. The depth and concentration time of both Mux- 
Merger and time-multiplexed Mux-Merger concentrator match 
those of the concentrators given in [3], [12] and are slightly 
higher than those of the concentrator given in [lo]. 

Unlike the expander based concentrators [221, [171, [231, 
[6], [l], or those that use ranking trees [12], [lo], the Mux- 
Merger sorter can be implemented using simple 4 x 1 mul- 
tiplexers, and does not require any comparators or adders. 
Furthermore, with time-multiplexing and pipelining, the Mux- 
Merger binary sorter comes very close to being an optimal 
concentrator in terms of its cost, with its depth and concen- 
tration time being quite competitive. In fact, in a recent paper 
[28], we were able to optimize this construction, i.e., reduce 
its cost to O(n)  without increasing its concentration time. 

The paper also described how to use Mux-Merger sorters to 
obtain an n-input superconcentrator with O ( n  lg lg n) bit-level 
cost and O(lg2 n) bit-level routing time. 
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